
CSE 5852: Lecture 23

November 28, 2016

1 Last Class

Last class, we introduced a collision-resistant hash function based on the discrete
logarithm problem. We also introduced the random oracle model and showed
security of RSA hash-and-sign in this model. In this class, we will show that
collision-resistant hash functions are sufficient to build a signature scheme.

Definition 1. Let K be a set and defined for each k ∈ K the function Hk :
Dk → Rk. Then {Hk}k∈K is a collection of hash functions if:

1. There is a PPT algorithm Gen that on input 1n outputs k ∈ K.

2. |Dk| > |Rk|. So each function Hk actually does reduce its domain.

3. Given k and m ∈ Dk, Hk(m) is efficiently computable.

4. Collision resistance For all PPT A, there exists a negligible function
ε(n) such that for k ← Gen(1n),

Pr[(m1,m2)← A(1n, k) ∧m1 6= m2 ∧Hk(m1) = Hk(m2)] ≤ ε(n).

this probability is over the choice of k and any randomness used by A.

2 Signature Schemes Based on Hashing

Recall the Lamport signature scheme that is secure for a single message. Let
Hk : {0, 1}2n → {0, 1}n be a family of hash functions. Then to sign messages
of length ` we construct a secret key which is 2` random values xi,j in {0, 1}2n.
Our public key is the hash of each of these values. So yi,j = Hk(xi,j) along with
the key k.

We will show this scheme is secure for a single message. We need to show
that an adversary who breaks this scheme is able to break collision resistance
of the hash function.

Proof. Our main observation is this if an attacker has a signature on a message
m and wishes to forge on some message m 6= m′ there is at least one position i
such that mi 6= m′i. Call m′i the value b. So forging a signature requires finding
a preimage of h of the value yi,b.

Let A be a PPT adversary that is trying to break security of the signature
scheme. We assume that A always requests a signature of some message before

1

outputting a forgery. We denote by m the requested message and the final
forgery as m′, σ′. Note that whenever A outputs a forgery it inverts the hash
function at some location.

We build the following algorithm A′ that attempts to break collision resis-
tance of H.

1. Receive input k.

2. Choose random values xi,j and compute yi,j = Hk(xi,j).

3. Provide k, yi,j to A

4. When A requests a signature of m provide the corresponding xi,j .

5. When A outputs a forgery m′, σ′ find the location i where mi 6= m′i.
Denote m′i = b.

6. If xi,b is not equal to the σi then output xi, σ
′
i as a forgery.

7. Else output ⊥.

Each value xi,j is chosen uniformly at random. The adversary has no infor-
mation about which xi,j was used to produce the yi,j . Thus, as long as each
yi,j has at least two possible preimages, the preimage σ′i returned by A will
differ from the known preimage of A′. The argument that most yi,j will have
multiple preimages is similar to the proof that collision resistance implies second
preimage resistance. The basic idea is that at most 2n − 1 values of x have a
unique y such that y = Hk(x). Thus, with probability 2n−1

22n an xi,j is chosen
from the set Good with multiple preimages. By the union bound the probability
that all xi,j are chosen from the set Good is at least 2` 1

2n . Furthermore, since
this probability is so small the adversaries success in this set cannot drop by
too much. Together these facts allow us to conclude that A has a nonnegli-
gible chance of inverting when there are multiple preimages. In this case, the
adversary will choose a different preimage than A′ with probability at least one
half representing a collision. Overall this occurs with an inverse polynomial
probability.

So Lamport’s scheme allows us to sign a single message at the cost of a long
private key. Furthermore, the length of this message can be arbitrary at the
cost of increasing the length of the private (and public) keys.

So our next signature scheme is going to require state. The basic idea is
that the holder of the secret key will additionally keep some state value s. At
the conclusion of each signing operation the state will be updated from si to
si+1. Note that the public key is still fixed and does not require updating. We
can obviously construct a t secure signature scheme by generating t independent
public keys and only signing with each private key a single time. This creates a
public key whose length is linear in t.

2.1 Merkle Trees

We could also condense down the length of the public key using something called
a Merkle tree. The idea is to publish a single hash value as the public key. Draw
a Merkle tree. This has the effect of creating a constant length public key at
the cost of a logarithmic length signature.

2

Construction 1. Let (Gen,Sign,Vfy) be a one-time secure signature scheme
with verification keys in {0, 1}n. Let H be a family of collision resistant hash
functions from {0, 1}2n → {0, 1}n. Then the following is a t secure signature
scheme:

1. Gen′ run t copies of Gen to create vki, ski. Create Merkle tree of vki with
root value h∗. Publish h∗ as the verification key. Set value i = 1.

2. Sign′(sk, i,m). Run σi = Sign(ski,m). Publish σi along with the corre-
sponding Merkle tree nodes as the signature.

3. Vfy′(h∗, hi,m, σ). Verify the Merkle tree then run Vfy(vki,m, σ) for the
one-time scheme.

This scheme requires knowledge of the number of messages ahead of time.
We’re now going to remove this restriction.

2.2 Chain Based Signatures

As before assume we have a one-time secure signature scheme. We generate
a vk1, sk1 and have vk1 be the public verification key. When we need to sign
instead of just signing the message we also create a new pair vk2, sk2. So our
signature looks like Sign′(ski,m) does the following:

1. run (ski+1, vki+1 ← Gen(1n).

2. Generate σi ← Sign(ski, vki+1,m).

3. Let σ′i = σ′i−1, vki, σi.

So note the tradeoff that we’ve made. We have a constant length public key
and signing only requires a constant number of operations but it is necessary
to store all previously generated public keys. Indeed, verification takes linear
time in the number of messages. Note this also requires all signed messages to
always be presented when verifying a message this might be a problem but a
good encryption scheme can be added as well to take care of this problem.

Second note, we need the one-time secure signature scheme to be capable
of signing messages that are longer than its own public key. This was not the
case for the Lamport signature scheme. However, before applying our one-time
secure scheme we can first use a collision resistant hash function to decrease the
length of the input.

2.3 Combining Tree and Chain

The main problem with the Tree based approach was that we needed to known
the number of messages to be signed ahead of time. The chain based approach
doesn’t scale well because it has linear size signatures. Lets try and combine the
two approaches. Lets assume we are talking about signing messages of length
n. When we need to sign a message m it generates a path down to this message
creating new signing and verification keys along the way. If these have already
been generated it uses the previously generated ones. Then at the end it uses
the signature key for the corresponding message.

3

Technique vk length σ len # messages bounded
Multi keys O(t) O(1) Yes
Merkle tree O(1) O(log t) Yes
Chain O(1) O(t) No
Tree Signing O(1) O(log n) No

Table 1: Comparison of stateful signature techniques based on collision-resistant
hashes.

2.4 Removing state

The reason the previous scheme needed state is that the leaves of the tree
had to be consistent with the generated public keys from previous schemes. We
couldn’t regenerated these internal leaves for each signature. If we did regenerate
we would be using a one-time scheme to sign multiple different messages which
may not be secure. The way to replace this is to go back to two observations:

1. Pseudorandomness is just as good as randomness.

2. We know a mechanism to consistently generate a large amount of pseudo-
random data.

So the idea is to replace all of the randomness needed to generate the signing
keys and the signature algorithms with pseudorandom values derived from a
pseudorandom function. The key to this function will be the overall secret key
and will allow regeneration of all needed signing keys. Some care is needed to
ensure that distinct calls to the PRF are used for each node in the tree and each
signing algorithm.

3 How does identity actually work?

Explain the CA structure and how things are loaded on to individual computers.

References

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital
signatures-how to sign with rsa and rabin. In International Con-
ference on the Theory and Applications of Cryptographic Techniques,
pages 399–416. Springer, 1996.

[CGH04] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle
methodology, revisited. Journal of the ACM (JACM), 51(4):557–594,
2004.

4

