
CSE 5852: Lecture 24

Prof. Benjamin Fuller
Scribe: Chao Shang

November 30, 2016

1 Review of Last Class

The last class introduced collision-resistance hash function are sufficient to build
a signature scheme. We introduced Merkle trees, which is a hash based data
structure that is a generalization of the hash list. Then we learned Chain-based
and Tree-based signatures.

Today we will introduce one topic: how individuals talk ’securely’ on the
Internet? We will cover the Secure Sockets Layer (SSL) and Transport Layer
Security (TLS) protocols, how they can be applied to a web application, and
the requirements necessary to create a secure link between a server and a client
machine. The SSL and TLS offers security for the HTTP protocol.

2 SSL and TLS

2.1 Background

TLS (Transport Layer Security) and SSL (Secure Sockets Layer) are proto-
cols that provide data encryption and authentication between applications and
servers. TLS and its predecessor, SSL, both frequently referred to as “SSL,” are
cryptographic protocols that provide communications security over a computer
network.

Netscape developed the original SSL protocols. The current version of SSL
is version 3.0, released by Netscape in 1999. TLS 1.0 was first defined in RFC
2246 in January 1999 as an upgrade of SSL Version 3.0. TLS 1.2 is the current
version and TLS 1.3 is currently in development.

2.2 SSL/TLS Handshake

First, let’s see what is the SSH/TLS handshake briefly. The Simplified SSL
Handshake as shown in Figure 1 is:

1. Client and server negotiate on cipher selection.

2. Cooperatively establish session keys.

1



Figure 1: Overview of SSL Handshake

3. Use session keys for secure communication.

In this process, we can find several problems as shown in Figure 2.

Figure 2: SSL Handshake

For the first problem, the client must acquire a digital certificate. This
can be obtained from a Certification Authority (CA). For the second problem,
server want to know if k is equal to k′. We never said that MACs are guaranteed
to be secure if the two values are not the same. So the last two messages have
unclear security unless we are assuming a stronger property than standard MAC
security. An alternative would be for the client to sign the encrypted pre-master
secret but this would be vulnerable to a man in the middle attack as the server
knows nothing about the client identity.

What is Certification Authority?

2



A certificate authority or certification authority (CA) is an entity that issues
digital certificates. A digital certificate certifies the ownership of a public key
by the named subject of the certificate.

CAs play a critical role in how the Internet operates and how transparent,
trusted transactions can take place online. CAs issue millions of Digital Certifi-
cates each year, and these certificates are used to protect information, encrypt
billions of transactions, and enable secure communication. But we need to know
we assume certificate authority (CA) is a trusted entity.

Figure 3: CA

In addition, we security is based on the privacy of server pkS . This means
that if this value is captured by an attacker at a later time then all previous
conversations (observed by the attacker) of the server will be decryptable. The
use of Diffie-Hellman cryptography allows for forward security which decouples
long-term identity from short-term exchange of secrets.

Figure 4: public-key cryptpgraphy to improve security

Let’s see the details of the messages exchanged during the Client-authenticated
TLS handshake. The steps are as follows:

1. The SSL or TLS client sends a “client hello” message that lists cryp-
tographic information such as the SSL or TLS version and so on. The
message also contains a random byte string that is used in subsequent
computations.

3



2. The SSL or TLS server responds with a “server hello” message that con-
tains the CipherSuite chosen by the server from the list provided by the
client, the session ID, and another random byte string. The server also
sends its digital certificate. If the server requires a digital certificate for
client authentication, the server sends a “client certificate request” that
includes a list of the types of certificates supported and the Distinguished
Names of acceptable Certification Authorities (CAs).

3. The SSL or TLS server verifies the client’s certificate.

4. The SSL or TLS client sends the random byte string that enables both the
client and the server to compute the secret key to be used for encrypting
subsequent message data. The random byte string itself is encrypted with
the server’s public key.

5. If the SSL or TLS server sent a “client certificate request,” the client sends
a random byte string encrypted with the client’s private key, together with
the client’s digital certificate, or a “no digital certificate alert.” This alert
is only a warning, but with some implementations the handshake fails if
client authentication is mandatory.

6. The SSL or TLS server verifies the client’s certificate.

7. The SSL or TLS client sends the server a “finished” message, which is
MAC’d with the secret key, indicating that the client part of the handshake
is complete.

8. The SSL or TLS server sends the client a “finished” message, which is
MAC’d with the secret key, indicating that the server part of the hand-
shake is complete.

9. For the duration of the SSL or TLS session, the server and client can
now exchange messages that are symmetrically encrypted with the shared
secret key.

3 Knowledge Points

In SSL/TLS Handshake, we have covered these points:

1. Digital Signiture

2. Public-key Encryption

3. Symmetric Encryption/ PRF

4. MAC

5. Pseudorandom Generator

6. Key exchange

4



Other things coverd in this semester:

1. Random Oracle

2. One-time pad

3. Universial Hash Function

4. Discrete Log

5. Factoring

6. Pseudorandom Function

7. GCD algorithm

8. Definitions: Encryption, semantic security, indistinguishable security, In-
tegrity, and EU-CMA

9. polynomial, negligible

5


