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1 Overview

We will quickly look at last class’ material, look into some algebraic properties of Z,,, construct a
universal hash function using these properties, and (very briefly) discuss what happens when the
key space is smaller than the message space, i.e., || < |M].

2 Last Class

Definition 1. A strongly universal hash function is a hash function

h:KxM~T
where ¥d' # ¢, t,t', we have

1

Pr[h(a,c) =t A h(a,d) =1t] = TP

Definition 2. A group is a pair (G,-) where G is a nonempty set equipped with an operation -
satisfying the following requirements:

Jde € G such that Vg € G we have eg = ge = g (existence of identity element)

Vg,h € G we have gh € G (closure)

Vg, h,k € G we have (gh)k = g(hk) (associativity)

Vg € G,3g7" such that g~'g = gg~*

= e (existence of a unique inverse)

3 Algebra in 7Z,

Definition 3. We write a mod n to mean the remainder of dividing a by n. That is, if for some
integer q and r where 0 < r < n we have a = qn + r, we can write

r =amodn

Some examples:



e 50 mod 37 =13
e 20 mod 37 = 20

e 87 mod 37 =13

Definition 4. We say a and b are congruent, or a is congruent to b, when a mod n = b mod n.
This is written a = b mod n.

Observation 5. We can check that = is an equivalence relation:

e For all a we have a = a mod n (reflexive)
e For all a,b we have a = b mod n <= b = a mod n (symmetric)
e For all a,b,c, if a =bmod n and b = ¢ mod n, then a = ¢ mod n (transitive)
Some basic arithmetic works with this relation. It can be verified that (a+b) mod n = (a mod n)+

(b mod n). Similarly we have (ab) mod n = (a mod n)(b mod n). Division does not, in general,
work this way. That is, for any a,b we don’t necessarily have (a/b) mod n = (a mod n)/(b mod n).

Two examples:

e 10371092 - 10401 mod 100 = (10371092 mod 100)(10401 mod 100) = 92

e 768 -21 mod 6 = (768 mod 6)(21 mod 6) =0
It is important to know that, if ac = bc mod n, then it is not necessarily the case that a = b mod n.
In particular, ¢ has a multiplicative inverse in integers modn if and only if ged(c,n) = 1.
Proposition 6. The set {0,...,n—1} equipped with the operation addition modn is a group. This
group s called Z,,.

® 7y has the identity 0

e For any a € Z, we have the unique inverse n — a

e Closure follows from reduction modn

e Associativity inherits from the associativity of +

Note that Z,, equipped with multiplication modn is not always a group.

To represent a + a, we can write 2a. Similarly, ¢ + @ + a = 3a and so on. Note that 2 or 3 are
not necessarily in the group, such as if @ is an element in a matrix group. More generally, the
expression aaa . ..aaa can be written with powers, like aaaa = a*
always represented by —+.

, since group operations are not

Definition 7. We write |G| to denote the order of G, that is, the size of the set.



For example, |Z,| = n.

It is possible to form a multiplicative group on a subset of Z,. Let p be a prime, then equip the
set Zp \ {0} with multiplication modp. Since p is prime, the ged of any number in {1,...,p — 1}
and p is 1. Thus, every element has an inverse, and this set-operation pair forms a group. This is
denoted as Z;;.l

4 Universal Hash Function

Construct a hash function

h: 72 x Ly — T

such that h(a,b,c) = ac + b mod p. The function essentially:

e Multiplies a and ¢, and reduces the product modp; call this new term d = ac mod p
e Adds d to b in Zj, so H(a,b,c) = b+ d mod p

Theorem 8. The above function is a strongly universal hash function.

Fix ¢,t,c/,t" € Zy such that ¢ # ¢. We want to know for which a,b do we have ac + b = t mod p
and ac’ + b = t' mod p.

First rewrite first expression as b = t — ac mod p and use this relation in the other expression to
obtain ac’ +t — ac = t' mod p. Some algebra lets us rewrite this as a(¢ — ¢) = (¢’ — t) mod p.
Observing now that ¢ — ¢ # 0 and ¢ — ¢ # p, we have ged(¢’ — ¢,p) = 1. Thus a = (t' — t)(¢/ —
¢)~! mod p, showing the uniqueness and existence of a. Substituting this back into any of the initial
expressions will also show the uniqueness and existence of b.

Since the choices of a,b given ¢, and t,t are unique. There is a single a, b that produces ¢, c,t,t’
and this occurs with probability 1/(|al|b|) or equivalently 1/|p|?. That is,

1

Pr[h(a,b,c) =t A h(a,b,) =t]= A
p

Two things to note.

e Did not exclude the possibility of a = 0 so that nothing in the tag space would be excluded

e The key is twice as long as the message

So with the above universal hash function, we can consider a one-time pad and one-time MAC as
follows (for some p that is larger than the message space):

Similarly we can also define a multiplicative group on Z,, called Z¥. This group consists of all elements a where
ged(a,n) = 1. You should verify for yourself that multiplying two elements a, b with ged(a,n) = 1 and ged(b,n) =1
yields an element gcd(ab mod n,n) = 1.



1. Generate the keys k,a,b

2. Get ciphertext ¢ = k @ m, where m is the message
3. Get tag t = ac+ bmod p
4. Send c,t

The above scheme is perfectly secure and unforgeable. To verify, the receiver computes t' =
ac + bmod p. If t' # t, then the receiver aborts. Otherwise, the receiver computes m = ¢ @ k to
retrieve the message.

5 What happens when the key space is smaller than the message
space?

What was outlined in the previous section is information-theoretic security, where the adversary
has unbounded computational power. We showed it was necessary that the key space is larger than
or equal to the message space. What happens if we violate this assumption? If the key space is
smaller than the message space, the image of any two messages under Enc over the support of
cannot always be the same set.

Attack 1 Assume that | M| is uniformly distributed. For a particular ciphertext ¢ the adversary
can just exhaustively check all keys and rule out the messages that do not appear. This violates
perfect secrecy.

Attack 2 If the adversary knows that the hiddentext is one of two possible messages, then one
manner of attack is to use their knowledge of ¢ to guess the message by randomly generating
and computing m = Dec(c, K). There is a nonzero chance of determining the message, since the
limited key space introduces a bias on M|C. This violates perfect secrecy.

The the former attacker has the runtime X and completely eliminates messages, the latter is efficient
(just guess a key). This shows if we want to work in regimes when || < | M| we need to adapt our
definition in two ways:

1. We need to restrict to adversaries running in limited time.

2. We need to allow the adversary some probability of learning about messages.



