CSE 5852: Problem Set 3

Due: October 5, 2016

1 Working with computational security

Recall the following definitions.

Definition 1. A function $p : \mathbb{Z}^+ \to \mathbb{R}^+$ is a polynomial (bounded) function if there exists $k, N \in \mathbb{Z}^+$ such that for all n > N if holds that $p(n) \le n^k$.¹²

Definition 2. A function $f : \mathbb{Z}^+ \to \mathbb{R}^+$ is negligible function if for every positive polynomial p there is an N such that for all integers n > N it holds that f(n) < 1/p(n).

- a) **10 pts** Show that the product, $p \cdot q$ of two polynomial functions p, q is a polynomial function. (Your response should consider the N_p, N_q where this becomes true for each function p, q.)
- b) **10 pts** Show that the sum, p + q of two polynomial functions, p, q is a polynomial function. (Your response should consider the N_p, N_q where this becomes true for each function p, q.)
- c) **10 pts** Show that for any polynomial function p(n) and negligible function $\epsilon(n)$ the function $p(n)\epsilon(n)$ is a negligible function. (Your response should consider the N_p, N_ϵ for each function.)
- d) **10 pts** Show that the sum, $(\epsilon + \nu)(n)$, of two negligible functions, $\epsilon(n), \nu(n)$ is negligible. (Your response should consider the N_{ϵ}, N_{ν} where this becomes true for each polynomial p.)
- e) 10 pts Consider a PPT \mathcal{A} that makes invokes another PPT \mathcal{A}' as a subroutine.³ Show that the overall running time of \mathcal{A} is polynomial time (even counting the running time \mathcal{A}'). In this question \mathcal{A} may make multiple calls to \mathcal{A}' .

Hint: What is the maximum number of times that \mathcal{A} can invoke \mathcal{A}' ? You may use your answers from any previous part.

¹Here we are talking about a function that is bounded by a polynomial not an actual polynomial. For example $p(n) = \sin(n)$ would satisfy our definition but this function is not a polynomial. For the purposes of this problem set we are concerned with polynomial time. In this setting, we care that the function is bounded above by a polynomial. That is what this definition guarantees.

²This definition is equivalent to saying that $p(n) \leq cn^k$ for some constant c > 0. The constant c can be avoided by increasing k, so we remove it to simplify notation.

 $^{^{3}}$ We did not explicitly define this behavior but you can think of this as a function call in a program language.

2 Computational Definitions of Security

Recall our definition of indistinguishable encryptions:

Definition 3 (Indistinguishable). An encryption scheme $(\mathcal{M}, K, \mathsf{Enc}, \mathsf{Dec})$ has indistinguishable encryptions if for all PPT \mathcal{A} for every two messages $m_1, m_2 \in \mathcal{M}$:

$$|\Pr_{k \in K}[\mathcal{A}(\mathsf{Enc}_k(m_1)) = 1] - \Pr_{k \in K}[\mathcal{A}(\mathsf{Enc}_k(m_2)) = 1]| < \epsilon(n).$$

for some negligible function $\epsilon(n)$.

Consider the following alternative definition:

Definition 4 (Indistinguishable). An encryption scheme $(\mathcal{M}, K, \mathsf{Enc}, \mathsf{Dec})$ has IND encryptions if for all PPT \mathcal{A} for every two messages $m_1, m_2 \in \mathcal{M}$:

$$\Pr_{k \in K, b \leftarrow \{1,2\}} [\mathcal{A}(\mathsf{Enc}_k(m_b)) = b] \le \frac{1}{2} + \epsilon(n).$$

for some negligible function $\epsilon(n)$.

a) (10 pts) Describe in words how the two definitions are different.

b) (20 pts) Show Definitions 3 and 4 are equivalent (show both directions of the implication).⁴ Also show the relationship between the two negligible functions.

c) (10 pts) In class we showed a version of semantic security for multiple messages. Present a definition of indistinguishable encryptions for multiple messages.

d) (10 pts) Does an encryption scheme with indistinguishable encryptions for a single message have indistinguishable encryptions for multiple messages? If yes, provide a proof, if not provide a counterexample.

 $^{^4\}mathrm{You}$ may want to refer to proof in class on the equivalence of semantic security and indistinguishable encryptions.