CSE 2500-03: Homework 2
 Due September 29, 2017 (before start of lecture)

November 28, 2017

1. (10 points) Imagine that num_orders and num_instock are particular values (as in a computer program. Write a negation for the following (Use De Morgan's Law on the original statement form $(p \wedge q) \vee((r \wedge s) \wedge t))$:
(num_orders <50 and num_instock >300)
or (50 \leq num_orders <75 and num_instock >500).
2. (10 points) Is the following a tautology? A contradiction? Neither?

$$
(\neg p \vee q) \vee(p \wedge \neg p)
$$

3. (10 points) Is $(p \oplus p) \vee r \equiv(p \wedge r) \oplus(p \wedge r)$? Justify your answer (using a truth table).
4. (10 points) Show that $(p \rightarrow(q \rightarrow r)) \leftrightarrow((p \wedge q) \rightarrow r)$. Alternatively, that $p \rightarrow(q \rightarrow r) \equiv(p \wedge q) \rightarrow r$.
5. (10 points) Write the following statements in logical form and show whether they are logically equivalent using a truth table and a short explanation.
If 2 is a factor of n and 3 is a factor of n, then 6 is a factor of n.
2 is not a factor of n or 3 is not a factor of n or 6 is a factor of n.
6. (10 points) Assume that the statement "If compound X is boiling, then its temperature must be at least $150^{\circ} \mathrm{C}$ ". Which of the following statements is true? Justify your answers.
(a) Compound X will boil only if its temperature is at least $150^{\circ} \mathrm{C}$.
(b) If compound X is not boiling, then its temperature is at less than $150^{\circ} \mathrm{C}$.
(c) A necessary condition for compound X to boil is that its temperature is at least $150^{\circ} \mathrm{C}$.
(d) A sufficient condition for compound X to boil is that its temperature is at least $150^{\circ} \mathrm{C}$.
7. (20 points) You have an encounter with an island with knights (who always tell the truth) and knaves (who always lie). Two natives C and D approach and C says "Both of us are knaves." What is C ? What is D ?
8. (20 points) You can assume the following statements:
(a) $p \rightarrow q$
(b) $r \vee s$.
(c) $\neg s \rightarrow \neg t$.
(d) $\neg q \vee s$
(e) $\neg s$.
(f) $(\neg p \wedge r) \rightarrow u$.
(g) $w \vee t$.

Construct an argument for $u \wedge w$. Do not use a truth table, instead justify each conclusion you make using one of the argument forms introduced in class (in Section 2.3 of book).

1 Suggested Problems

Problems in this section are not required for the homework. They are additional problems that will help you in your progress. If you put forth a good faith effort on all of these problems then you will receive 10 additional points on your homework grade (not to exceed 100).

1. Is the following a tautology? A contradiction? Neither?

$$
(p \wedge p) \vee(\neg p \vee(p \wedge \neg q))
$$

2. Show that $(p \vee q) \rightarrow r \equiv(p \rightarrow r) \wedge(q \rightarrow r)$.
3. Assume x represents a fixed real number. You may assume that $(p \vee q) \rightarrow$ $r \equiv(p \rightarrow r) \wedge(q \rightarrow r)$. Rewrite the following statement (using the above rule):
If $x>2$ or $x<-2$, then $x^{2}>4$.
4. Show that proof by division into cases is a valid argument form. That is, show

$$
((p \vee q) \wedge(p \rightarrow r) \wedge(q \rightarrow r)) \rightarrow r
$$

5. Give an example of a statement that is not logically equivalent to its converse.
6. Give an example of a statement that is not logically equivalent to its inverse.
7. Convert the following statement to if-then form: "passing the final exam is a necessary condition for passing the course."
