CSE 2500-03: Homework 4
 Part 1 Due October 18, 2017 (before start of lecture)

December 26, 2017

1. (10 points) Prove that the following statement is false: "There exists an integer $k \geq 4$ such that $2 k^{2}-5 k+2$ is prime." Recall our definition of prime numbers:

Definition 1. A number $p \in \mathbb{Z}^{+}$is prime if and only if $p>1$ and $\forall x, y$ such that $x y=p$ either $x=p$ and $y=1$ or $x=1$ and $y=p$.
2. (5 points) Determine if the statement is true or false, if true prove, if false construct a counterexample:
"If m and n are positive integers and $m n$ is a perfect square, then m and n are both perfect squares."

Definition 2. An integer n is called a perfect square if and only if $n=k^{2}$ for some integer k.
3. (5 points) Prove the following statement: "Given two rational number r, s where $r<s$ there exists another rational number between r and s."
4. (10 points) Suppose that a, b, c and d are integers and $a \neq c$. Suppose that $x \in \mathbb{R}$ and that

$$
\frac{a x+b}{c x+d}=1
$$

Is x necessarily rational? If so, prove this fact.
5. (5 points) Use the unique factorization theorem to write the following integers in standard factored form:
(a) 1176 .
(b) 5733 .
(c) 3675 .
6. (10 points) Prove the following statement:"The square of any integer has the form $4 k$ or $4 k+1$ for some integer k."

