CSE 2500-03: Homework 5 Due November 17, 2017 (before start of lecture)

November 13, 2017

1. (10 points) Show that

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

for all integers $n \geq 1$ by mathematical induction.
2. (15 points) Prove that

$$
\sum_{i=1}^{n+1} i 2^{i}=n \cdot 2^{n+2}+2
$$

for all integers $n \geq 0$ by mathematical induction.
3. (15 points) By mathematical induction, show that $1+n x \leq(1+x)^{n}$ for all real numbers $x>-1$ and all integers $n \geq 2$.
4. (15 points) A sequence $c_{0}, c_{1}, c_{2}, \ldots$ is defined by letting $c_{0}=3$ and $c_{k}=$ $\left(c_{k-1}\right)^{2}$ for all integers $k \geq 1$. Show that $c_{n}=3^{2^{n}}$ for all integers $n \geq 0$.
5. (15 points) Suppose that $g_{1}, g_{2}, g_{3}, \ldots$ is a sequence defined as follows:

$$
\begin{aligned}
& g_{1}=3, g_{2}=5 \\
& g_{k}=3 g_{k-1}-2 g_{k-2}, \text { for all } k \geq 3
\end{aligned}
$$

Prove that $g_{n}=2^{n}+1$ for all integers $n \geq 1$.
6. (15 points) Let $d_{0}, d_{1}, d_{2}, \ldots$ be defined by the formula $d_{n}=3^{n}-2^{n}$ for all integers $n \geq 0$. Show that this sequence satisfies the recurrence relation (whenever $k \geq 2$):

$$
d_{k}=5 d_{k-1}-6 d_{k-2}
$$

7. (15 points) Use iteration to guess an explicit formula for the recurrence relation

$$
\begin{aligned}
b_{k} & =\frac{b_{k-1}}{1+b_{k-1}}, \text { for all integers } k \geq 1 \\
b_{0} & =1
\end{aligned}
$$

Use mathematical induction to show that your guessed formula is correct for all $k \geq 0$.

1 Suggested Problems

1. Consider the sum of the first k odd numbers. Find an explicit formula for the sum and prove this formula using mathematical induction.
2. Show that any set with n elements has 2^{n} subsets (by mathematical induction).
3. We showed De Morgan's laws for a negation over a conjunction of size 2. Use mathematical induction to extend this to larger size conjunctions. That is, show that

$$
\neg\left(A_{1} \wedge A_{2} \wedge \cdots \wedge A_{n}\right) \equiv\left(\neg A_{1} \vee \neg A_{2} \vee \cdots \vee \neg A_{n}\right)
$$

where A_{i} are arbitrary logical statements.
4. Prove by mathematical induction that $5 \mid 11^{n}-6$ for all positive integers n.
5. Prove by induction that $2^{n} \geq 2 n$ for all integers $n \geq 2$.
6. Show by strong induction that every integer $n \geq 12$ is expressible as a sum $4 k+5 \ell$ for integers $k, \ell \geq 0$.

