CSE 2500-03: Homework 5 Due November 17, 2017 (before start of lecture)

November 13, 2017

1. (10 points) Show that

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

for all integers $n \ge 1$ by mathematical induction.

2. (15 points) Prove that

$$\sum_{i=1}^{n+1} i2^i = n \cdot 2^{n+2} + 2,$$

for all integers $n \ge 0$ by mathematical induction.

- 3. (15 points) By mathematical induction, show that $1 + nx \leq (1 + x)^n$ for all real numbers x > -1 and all integers $n \geq 2$.
- 4. (15 points) A sequence $c_0, c_1, c_2, ...$ is defined by letting $c_0 = 3$ and $c_k = (c_{k-1})^2$ for all integers $k \ge 1$. Show that $c_n = 3^{2^n}$ for all integers $n \ge 0$.
- 5. (15 points) Suppose that g_1, g_2, g_3, \dots is a sequence defined as follows:

$$g_1 = 3, g_2 = 5$$

 $g_k = 3g_{k-1} - 2g_{k-2}$, for all $k \ge 3$

Prove that $g_n = 2^n + 1$ for all integers $n \ge 1$.

6. (15 points) Let $d_0, d_1, d_2, ...$ be defined by the formula $d_n = 3^n - 2^n$ for all integers $n \ge 0$. Show that this sequence satisfies the recurrence relation (whenever $k \ge 2$):

$$d_k = 5d_{k-1} - 6d_{k-2}$$

7. (15 points) Use iteration to guess an explicit formula for the recurrence relation

$$b_k = \frac{b_{k-1}}{1+b_{k-1}}$$
, for all integers $k \ge 1$
 $b_0 = 1$.

Use mathematical induction to show that your guessed formula is correct for all $k \ge 0$.

1 Suggested Problems

- 1. Consider the sum of the first k odd numbers. Find an explicit formula for the sum and prove this formula using mathematical induction.
- 2. Show that any set with n elements has 2^n subsets (by mathematical induction).
- 3. We showed De Morgan's laws for a negation over a conjunction of size 2. Use mathematical induction to extend this to larger size conjunctions. That is, show that

$$\neg (A_1 \land A_2 \land \dots \land A_n) \equiv (\neg A_1 \lor \neg A_2 \lor \dots \lor \neg A_n).$$

where A_i are arbitrary logical statements.

- 4. Prove by mathematical induction that $5|11^n 6$ for all positive integers n.
- 5. Prove by induction that $2^n \ge 2n$ for all integers $n \ge 2$.
- 6. Show by strong induction that every integer $n \ge 12$ is expressible as a sum $4k + 5\ell$ for integers $k, \ell \ge 0$.