CSE 2500-03: Homework 6
 Due December 6, 2017
 (before start of lecture)

December 15, 2017

1. (10 points) Let $A=\{n \in \mathbb{Z} \mid n=5 r$ for some integer $r\}$ and $B=\{m \in$ $\mathbb{Z} \mid m=20 s$ for some integer $s\}$. Is $A \subseteq B$?, explain. Is $B \subseteq A$?, explain.
2. (10 points) Let $A=\{a, b, c\}, B=\{b, c, d\}$, and $C=\{b, c, e\}$.
(a) Find $A \cap(B \cup C),(A \cap B) \cup C$ and $(A \cap B) \cup(A \cap C)$. Which of these sets are equal?
(b) Find $(A-B)-C$ and $A-(B-C)$. Are these two sets equal?
3. (10 points) Let $S_{i}=\left\{x \in \mathbb{R} \left\lvert\, 1<x<1+\frac{1}{i}\right.\right\}=\left(1,1+\frac{1}{i}\right)$ for all positive integers i.
(a) What is $\cup_{i=1}^{\infty} S_{i}$?
(b) What is $\cap_{i=1}^{\infty} S_{i}$?
4. (6 points) Is $\{\{5,4\},\{7,2\},\{1,3,4\},\{6,8\}\}$ a partition of $\{1,2,3,4,5,6,7,8,8\}$?

Is $\{\{1,5\},\{4,7\},\{2,8,6,3\}\}$ a partition of $\{1,2,3,4,5,6,7,8\}$?
5. (4 points) Find $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.
6. (10 points) Let $A_{1}=\{1,2,3\}, A_{2}=\{u, v\}$ and $A_{3}=\{m, n\}$. Find the following sets:
(a) $\left(A_{1} \times A_{2}\right) \times A_{3}$.
(b) $A_{1} \times A_{2} \times A_{3}$.

How are these sets different?
7. (10 points) Use an elementary argument to prove the following statement. You may assume that all subsets are sets of a universal set U. It may be helpful to proceed by division into cases.
For all sets A, B, and C, if $A \subseteq C$ and $B \subseteq C$ then $A \cup B \subseteq C$.
8. (10 points) Use the element method for proving a set equals the empty set to prove that :
For all sets A, B, and C, if $A \subseteq B$ and $B \cap C=\emptyset$ then $A \cap C=\emptyset$.

You may assume that all sets are subsets of a universal set U and you may wish to proceed by contradiction.
9. (10 points) Use the element method for proving a set equals the empty set to prove that :
For all sets A, B, and C, if $B \cap C \subseteq A$, then $(C-A) \cap(B-A)=\emptyset$.
You may assume that all sets are subsets of a universal set U and you may wish to proceed by contradiction.
10. (10 points) Construct an algebraic proof for the following (cite a set identity to justify each step):
For all sets A, B, and C,

$$
(A-B)-(B-C)=A-B
$$

Recall that you must show the two sets are equal.
11. (10 points) Simplify the expression citing a set identity in each step:

$$
((A \cap(B \cap C)) \cap(A-B)) \cap\left(B \cup C^{c}\right) .
$$

1 Suggested Problems

1. Derive the set identity $A \cup(A \cap B)=A$ from other set identities. Start by showing that for all subsets B of a universal set $U, U \cup B=U$.
2. Define $A=\{1,2,3\}$. What is $\mathcal{P}(A)$? What is $|\mathcal{P}(A)|$?
3. Show that $\left|\mathbb{Z}^{+}\right|=|\mathbb{Z}|$.
4. Show that if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
5. Show that for any $A, A-A=\emptyset$.
6. Define two partitions of the integers where each part of the partition has an infinite number of elements.
