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1 Knowledge Gained by a Proof

In the previous set of notes we described an interactive proof for graph non-
isomorphism which is a language not known to be in BPP or NP (so a trivial
interactive proof system is not known). We stated that there are two primary
uses for interactivity in a proof system. The first is convincing verifiers of
statements that they cannot verify themselves (with or without a witness). The
second is convincing verifiers without completely revealing a witness. In this
class we will try and formalize this notion. Roughly, the minimum amount that
could be communicated by an interactive proof is whether x ∈ L. One might
hope that the verifier V cannot convince another person of the truth of the
statement, the proof is only “for them.”

We’ll start to formalize this notion using the security of encryption which
had a similar flavor, we should learn “nothing” from an encryption.

Definition 1 (Perfect Secrecy). [SWBH49] Let M be a message space. Let K
be a distribution. Enc satisfies perfect secrecy if for any m and for any message
distribution M over M, Pr[M = m|Enc(K,M) = c] = Pr[M = m]. That is, M
is independent of Enc(K,M).

In computational setting this definition was more complicated as we could
not talk about pure independence of the message and the ciphertext. This lead
us to the definition of semantic security.

Definition 2 (Semantic Security). [GM84] Let M be a message space. Let
K be a distribution. Enc is semantically-secure if for all PPT A there exists
a simulator A′ such that for any message distribution M over M and for any
f, h :M→ {0, 1}∗,

Pr[A(C, h(M)) = f(M))]− Pr[A′(h(M)) = f(M)]| < ε.

In this definition we guarantee that any function of m that can be computed
by an adversary seeing the ciphertext can be computed by an adversary A′ with
almost the same probability without seeing the ciphertext. The point of this
definition was that the ciphertext did not give the adversary any knowledge
about the underlying message m.

Discussion Question 1: Consider an alternative definition that says there
exists a machine A′ that on input h(m) can produce messages identically dis-
tributed as c. Why does this definition imply semantic security?

We will use this second formulation as our starting point for defining knowl-
edge gained by an interactive proof. The rough intuition is that a proof carries

1



no knowledge if as a verifier we could have produced all the same messages that
the prover sent. As a reminder the notation < P, V > is used to represent the
output of V when interacting with P .

Definition 3 (Zero knowledge attempt 1). Let L be some language. We say
that a P, V is a zero-knowledge proof system if it is an interactive proof sys-
tem (satisfying completeness and soundness) and for all PPT A there exists a
“simulator” S such that ∀x ∈ L:

< P,A > (x)
d
= S(x).

Note the similarities between this definition and semantic security. First we
define zero knowledge for all PPT A, we do not assume that the verifier that
is trying to gain knowledge correctly follows security. This is because we are
defining security for an honest prover. Importantly, the machine S is allowed
to depend on A which means that S can have the entire code of A embedded.

While the machine V outputs only a single bit (that represented whether
x ∈ L), the algorithm A is allowed to output an arbitrary string. This string
could depend on the messages sent by P , random coin tosses, the statement x ∈
L, and some hidden values in the description of A. Because of this “arbitrary”
behavior it seems like the only way to design a machine S is to try and run the
algorithm A.

However, this requirement is slightly too strong so we allow the algorithm S
to report a failure, that is we allow the machine to output ⊥ some fraction of
the time.

Definition 4 (Perfect Zero Knowledge). [GMR89] Let (P, V ) be an interactive
proof system for some language L. We say that (P, V ) is perfect zero knowledge
if for every PPT A there exists a PPT S such that for every x ∈ L the following
two conditions hold:

1. With probability ≤ 1/2 on input x, S outputs ⊥.

2. Let s∗(x) be a random variable describing the distribution of S(x) condi-
tioned on S(x) 6=⊥. Then the following holds:

< P,A > (x)
d
= s∗(x).

Machine S is called a perfect simulator for the interaction of A with P .

While this definition is relatively simple to state it provides little intuition
about how to actually construct a simulator. Towards this end we’ll restate the
zero knowledge proof introduced in class.

Recall that two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic
if there exists a permutation π : V1 → V2 such that π(V1) = V2 and ∀u, v,
u, v ∈ E1 if and only if π(u), π(v) ∈ E2. We first assume that P is given as
input a permutation π as it allows a polynomial time description. Call this
permutation φ.

1. P inputs G1, G2 and φ. P picks a random π and computes a graph G′

that is π applied to G2. P sends G′ to V .

2. The verifier upon receiving G′ flips a bit b ∈ {1, 2} and asks P to provide
a permutation between G′ and Gb.
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3. The prover receives b from V . If b = 2 then P sends π−1. Otherwise P
sends φ−1 ◦ π−1 to V .

4. If the message, denote ψ received from the prover is an isomorphism be-
tween G′ and Gb then the verifier outputs 1 otherwise it outputs 0.

Theorem 1. The language graph isomorphism has a perfect zero-knowledge
interactive proof system. The programs specified satisfy the following:

1. If G1 and G2 are isomorphic then the verifier accepts with probability 1.

2. If G1 and G2 are not isomorphic then no matter what machine V interacts
with it will reject the input with probability at least 1/2

3. The prover is perfect zero knowledge.

Proof. We first show the programs are an interactive proof system. If the graphs
G1 and G2 are isomorphic then the G′ is isomorphic to both graphs. Thus, P
can always answer the challenge of V which will always output 1. If G1 and G2

are not isomorphic then there is no graph that is isomorphic to both G1 and G2

so no matter what graph G′ is sent in the first step the prover will not be able
to respond correct with probability at least 1/2.

We now turn to showing that the prover is perfect zero-knowledge. We first
note that the honest prover outputs 1 on messages x ∈ L thus the simulator can
just output 1. What is difficult here is that we don’t know what A is going to
do. We will focus on providing the machine A with properly distributed inputs
so it output whatever it likes. Consider the following program for S which is
able to run A:

1. Input two graphs G1 and G2. Pick a bit b′ ∈ {1, 2}. Pick a permutation
π from vertex Vb′ → V3−b′ and compute G′ = π(Gb′). Send G′ to A.

2. If A does not respond with a bit output ⊥. Without loss of generality
we assume that A responds with b ∈ {1, 2}. If b′ 6= b abort. Otherwise,
output π−1.

3. Output whatever A outputs.

Here we note that the probability that the simulator aborts is exactly 1/2
as if the two graphs are isomorphic the adversary A cannot predict the b′ with
probability greater than 1/2. The crucial claim here is that the graph G′ is
statistically independent of the bit b′. Note that this is not true when the two
graphs are not isomorphic. The “zero-knowledge” property is only required to
hold when x ∈ L. Further note that S runs in polynomial time if A runs in
polynomial time. It should be clear that S outputs ⊥ with probability ≤ 1/2.
When it doesn’t output ⊥ it provides A with messages distributed exactly the
same way as the honest prover.

Discussion Question 2: It seems very weak that the simulator is allowed
to fail with probability 1/2. How can we reduce the probability with which S
fails?
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